
Develop a simple MVC framework
in PHP, the use case of SimpleMVC
by Enrico Zimuel
PHP User Group Torino

Feb 23, 2023 - Toolbox CoWorking

https://www.zimuel.it/

PUG Torino

● PHP User Group Torino is a group of web
developers interested in the PHP language
(and not only)

● We are part of GrUSP association
● On meetup.com we are about 600 members
● We have also a mailing list with more than

100 members
● In the past we organized conferences like

PHP.TO.START (2011, 2012, 2013) and Zend
Framework Day (2014)

● Toolbox Coworking is sponsoring the group

https://torino.grusp.org/
https://www.grusp.org/
https://www.meetup.com/it-IT/pug-torino/
https://torino.grusp.org/mailing-list/
https://torino.grusp.org/tag/php-to-start/
https://torino.grusp.org/zend-framework-day/
https://torino.grusp.org/zend-framework-day/
https://toolboxcoworking.com/
https://torino.grusp.org/
https://www.grusp.org/
https://toolboxcoworking.com/

Model-View-Controller

MVC

● Il Model-View-Controller (MVC) is an architectural pattern
commonly used for developing user interfaces that divide the
related program logic into three interconnected elements

● It separates internal representations of information from the ways
information is presented to and accepted from the user

● Es. in a web application a catalog page can use the same Model for
two different Views, HTML and JSON

MVC
diagram

Web application

Web application
is a black box
that get an HTTP
request and
produce an HTTP
response

State machine

MVC
in a WEB app

Components
of an MVC web application

Components

● Managing HTTP request, response
● Routing
● Dispatch -> choose the Controller to be executed
● Controller
● Model, used by the Controller to extract the data
● View, render the data extracted from the Model

HTTP requests and responses

● PHP manages HTTP requests using global variables $_GET,
$_POST, $_REQUEST, $_COOKIE, etc

● Luckily in PHP we have PSR-7 standard
● We can manage HTTP requests and responses using immutable

objects!

https://www.php-fig.org/psr/psr-7/

PSR-7

● $request->getHeader(‘foo’)
● $response->withHeader(‘foo’, ‘bar’)
● $request->getMethod(), returns GET, POST, etc
● $request->getBody(), returns the body as stream
● $request->getBody()->getContents(), returns the body string
● $response->withStatus(404)

Routing

● Routing is the action of executing a specific portion of the
Application (eg. Controller) when an URL request is coming

● GET /login -> execute the LoginController
● A routing systems needs to manage parameters,

eg. /users[/{id}]

Mapping and dispatch

● We need to map URLs with Controllers
● Many frameworks use @annotation

○ Elegant from a code perspective
○ Not so convenient when you need to find a route

● Having a single file that stores this mapping can simplify the
management

Complexity

● Many controllers, models and views increase the complexity of the
project

● Especially the controllers that consume models and views
● We need to find a way to simplify the management of the class

connections
● We have a solution, Dependency injection!

Dependency Injection

● Dependency Injection (DI) is a design pattern in which an object or
function receives other objects or functions that it depends on

class Home implements ControllerInterface

{

 protected Engine $plates;

 public function __construct(Engine $plates)

 {

 $this->plates = $plates;

 }

Why DI is such important?

● DI simplify the complexity of the object dependency
● Makes the dependency between objects explicitly
● Makes the code testable

PHP-DI

● PHP-DI is a dependency injection container for PHP
● A container is a collection of object with all the dependencies

resolved
● Implements the autowiring feature

○ the ability of the container to automatically create and
inject dependencies

https://php-di.org/

Autowiring

class Cart

{

 public function __construct(PDO $pdo)

 {

 $this->pdo = $pdo;

 }

 // ...

}

$pdo = new PDO(/* parameters */);

$cart = new Cart($pdo);

class Cart

{

 public function __construct(PDO $pdo)

 {

 $this->pdo = $pdo;

 }

 // ...

}

$container = new DI\Container();

$cart = $container->get('Cart');

No autowiring Autowiring

SimpleMVC

SimpleMVC

● SimpleMVC is a mini framework MVC for PHP
● PSR-7 for managing HTTP requests and responses
● Routing system, using FastRoute
● Dependency injection using PHP-DI
● Focused on the KISS principle
● Developed from the teaching experience at ITS-ICT

Piemonte

https://github.com/simplemvc/
https://github.com/nikic/FastRoute
https://php-di.org/
https://en.wikipedia.org/wiki/KISS_principle
https://www.its-ictpiemonte.it/
https://www.its-ictpiemonte.it/

Demo time!

Thanks!
Contacts:
Enrico Zimuel
enrico@zimuel.it

PHP User Group Torino
torino.grusp.org

