
Talk with your data: building a 
RAG system for searching 
(private) data in natural language 
Enrico Zimuel, Tech Lead & Principal Software Engineer

Software Architecture Summit
June 13 2024, Bucharest (Romania) 



Summary 

● Introduction to RAG
● Semantic search and vectors
● Embedding
● Vector databases
● Elasticsearch and ELSER model
● Demo using Python, LLama3 and 

Elasticsearch

 



Retrieval-Augmented Generation (RAG)

● RAG is a technique in natural language processing that 
combines information retrieval systems with Large 
Language Models (LLM) to generate more informed and 
accurate responses

● It is composed by the following parts:
○ Retrieval-Augmented 
○ Generation



Generation

● LLMs like GPT-4o are a disruptive technology
● They are very useful and powerful in many industries
● But they have some limitations:

○ No source (potential hallucinations)
ᐨ How can I verify the information coming from an LLM?
ᐨ What sources has been used to generate the answer?

○ Out of date
ᐨ An LLM is trained in a period of time
ᐨ For update we need to retraining the model

https://openai.com/index/hello-gpt-4o/


Retrieval-Augmented 

● We collect sets of private or public document
● We build a retrieval system (database) to extract a subset 

of documents using a question
● Then we pass the question + documents found to an LLM 

as prompt with a context
● The LLM can give an answer using the updated documents



RAG diagram



Retrieve documents from a question

● How we can retrieve documents in a database using a 
question?

● We need to use semantic search
● One possible solution is to use a vector database
● A vector database is a system that uses vectors to 

retrieve information



What is a vector?

● A vector is a set of numbers
● Example: a vector of 3 elements [10.5, 11.23, -10]
● A vector can be represented in a multi-dimensional space



Similarity between two vectors

● Two vectors are (semantically) similar if they are close to 
each other

● We need to define a way to measure the similarity



Embedding

● Embedding is the translation of an 
input (document, image, sound, 
movie, etc) to a vector

● There are many techniques, using 
an LLM typically this is done by a 
neural network

● The goal is to group information 
that are semantically related to 
each other

● See projector.tensorflow.org

http://projector.tensorflow.org


Elasticsearch

● Elasticsearch is a distributed database, 
RESTful search and analytics engine with 
built-in AI features

● Semantic search using embeddings (dense 
and sparse vectors) and kNN with other 
tools like RFF

● You can use bulti-in AI models such as 
ELSER or E5 (Romanian included) and 
upload your custom models (eg. from 
HuggingFace)

https://www.elastic.co/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/sparse-vector.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/rrf.html
https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-elser.html
https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-e5.html
https://huggingface.co/elastic


Vector database + LLM

● We can query a vector database using natural language 
(e.g. a question)

● The query produces a set of relevant documents ordered 
by a score

● We can extract the top-3 score documents and pass it as 
context for a prompt using the previous question

● The prompt used for the LLM will be something like this:
○ Given the following {context} answer to the following 

{question}



Split the documents in chunk

● We need to store data in the vector database using chunk 
of information

● We cannot use big documents since we need to pass it in 
the context part of the prompt for an LLM that typically 
has a token limit (e.g. gpt-3.5-turbo from 4k to 16k)

● We need to split the documents in chunk (size of 
characters)

● There are some techniques to split the documents to avoid 
semantic breakings

https://platform.openai.com/docs/models/gpt-3-5


Text splitter

Chunk 1

Chunk 2

Overlap



LangChain

● LangChain is a framework designed to simplify the 
creation of LLM applications

● Features: Chains, Agents, Execution, Memory, Retriever 
(vector store), Tools

● For Python (⭐87K) and Javascript (⭐11.5K)
● LangChain and Elastic collaboration

https://www.langchain.com/
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchainjs
https://www.elastic.co/search-labs/integrations/langchain


DEMO
Build a RAG using LangChain + Llama3 + Elasticsearch

https://ela.st/bucharest-tech-week

https://ela.st/bucharest-tech-week


Thanks!
More information:

https://search-labs.elastic.co/search-labs

Contact:
 www.linkedin.com/in/ezimuel

https://search-labs.elastic.co/search-labs
http://www.linkedin.com/in/ezimuel

