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Cryptography engineering
● “Cryptographic engineering is the name we have coined to refer to the theory 

and practice of engineering of cryptographic systems”
Çetin Kaya Koç in Cryptographic Engineering

● A cryptographic engineer designs, implements, tests, and validates 
cryptographic systems

● She is also interested in breaking them for the purpose of checking their 
robustness and also building countermeasures to prevent or mitigate 
future attacks

https://link.springer.com/book/10.1007/978-0-387-71817-0


Weakest link property

A security system is only as strong as its weakest link



Adversarial setting
● One of the biggest differences between security 

systems and almost any other type of engineering is 
the adversarial setting

● Most engineers have to contend with problems like 
heat, cold, humidity, pressure, etc. 

● All these factors affect designs, but their effect is fairly 
predictable

● In security an opponent is intelligent, clever, malicious
● They don’t play by the rules, and they are completely 

unpredictable



Cryptographers are professional paranoids

Source: John Klossner technology cartoons

http://www.jklossner.com/humannature


Threat model
● Every system can be attacked
● The whole point of a security system is to 

provide access to some people and not to 
others

● In the end, you will always have to trust 
some people in some way, and these 
people in turn can attack your system

● What are you trying to protect against?



Cryptography is not the solution
● Cryptography is not the solution to your security problems
● It might be part of the solution, or it might be part of the problem
● In many situations, cryptography starts out by making the problem worse, 

and it isn’t at all clear that using cryptography is an improvement
● Cryptography has many uses
● It is a crucial part of many good security system
● It can also make systems weaker when used in inappropriate ways
● It’s very dangerous, it can provide a feeling of security but not actual 

security



Cryptography is very difficult
● Cryptography is fiendishly difficult
● Even seasoned experts design systems that are broken a few years later
● This is common enough that we are not surprised when it happens
● The weakest-link property and the adversarial setting conspire to make 

life for a cryptographer very hard
● Another significant problem is the lack of testing
● There is no known way of testing whether a system is secure
● A bad cryptography looks just like good cryptography, until it is seriously 

attacked



Cryptography is the easy part
● Even though cryptography itself is difficult, it is still one of the easy parts 

of a security system
● A cryptographic component has fairly well defined boundaries and 

requirements
● An entire security system is much more difficult to clearly define, since it 

involves many more aspects
● Another huge problem is the software quality, security cannot be effective 

if a software contains thousands of bug that lead to security holes



Implementation errors
● Implementation errors are by far the biggest security problem in 

real-world systems
● One major part is, as always, the operating system (OS)
● But none of the operating system in widespread use is designed with 

security as a primary goal
● The logical conclusion is that is impossible to implement a security 

system
● When we design a cryptographic system, we do our best to make sure 

that at least our part is secure



Secure software
● We can write correct software
● This is not good enough for a security system
● Correct software has a specified functionality, eg. if you click a button A 

then B will happen
● Secure software has an additional requirement: a lack of functionality; 

eg. no matter what an attacker does, she cannot do X
● This is very different, you can test for functionality, but not for lack of 

functionality
● We actually don’t know how to create secure code!



Keeping secrets



Keeping secrets
● Anytime you work with cryptography, you are dealing with secrets
● For the secure channel we have two type of secrets:

○ keys;
○ data;

● Both of these are transient secrets, we don’t have to store them for a long 
time

● The data is only stored while we process each message
● The key are only stored for the duration of the secure channel
● Transient secrets are keep in memory



Wiping state
● A basic rule of writing security software is to wipe any information as soon 

as you no longer need it
● The longer you keep it, the higher the chance that someone will be able to 

access it
● Free a variable (deallocates the memory) is not enough, you need to 

override the old data
● This is related to the programming language used

○ in C using memset();
○ in C++ using destructor;
○ more difficult in Java because the heap is garbage-collected



Wiping state in Java
● One solution to mitigate the heap state is to run a program with 

try-finally statement
● At least we can ensure that the finalization routines are run at program 

exit
● The finally block contains some code to force a garbage collect, using 

System.gc() and System.runFinalization()



Swap file
● Most operating systems use a virtual memory system to increase the 

number of programs that can be run in parallel
● While a program is running, not all of its data is kept in memory; some is 

stored in a swap file:
○ when the program tries to access data that is not in memory, the program is interrupted;
○ the virtual memory system reads the required data from the swap file into a piece of 

memory;
○ the program is allowed to continue;
○ when the virtual memory system requires more free memory, it will take an arbitrary 

piece of memory and write it to the swap file



Swap file (2)
● In some operating systems there are system calls that you can use to 

inform the virtual memory system that specific parts of the memory are 
not to be swapped out:

○ in Windows, we can use the VirtualLock() API;
○ in Unix systems, the mlock() system call is often implemented in such a way that locked 

memory is never swapped to disk



Cache
● Modern computers have hierarchy of memories
● The cache keeps a copy of the most recently used 

data from the main memory
● This is a smaller but faster memory
● It is not a great danger from a security perspective 

since only the OS can access the cache memory
● We need to trust the OS, there is very little we can 

do about this

Image source: Dive Into Systems

https://diveintosystems.org/book/C11-MemHierarchy/mem_hierarchy.html


Data retention by memory
● Simply overwriting data in memory does not delete the data
● This effect depends on the type of memory involved, basically when if you 

store data in a memory location, the location slowly starts to “learn” the 
data

● If you switch off the computer, the old data cannot be completely lost
● It is arguable whether this is a significant threat
● Workaround: instead of storing m, we generate a random string R and we 

store R and R ⊕ m, see [15] and [16] in references
● Preventing data retention: Eraser (Windows), shred (Linux)

https://eraser.heidi.ie/
https://linux.die.net/man/1/shred


Data integrity
● In addition to keeping secrets, we should protect the integrity of the data 

we are storing
● We use MAC to protect the integrity during the transit but if the data can 

be modified in memory we still have problems



Implementation issues



Randomness
● Generating good randomness is a vital part of many cryptographic 

operations and it is one of the most difficult ones
● In computer languages we use pseudorandom data (not really random)
● It is generated from a seed by a deterministic algorithm
● If you know the seed you can predict the pseudorandom data
● In cryptography we use pseudorandom number generator (PRNG) that 

are considered strong: even if an attacker sees a lot of the random data 
generated by PRNG, she should not be able to predict anything about the 
rest of the output



Seed
● The seed is a crucial part of a PRNG
● How can we choose a random seed?

○ Windows: Cryptography API, Next Generation
○ Linux: getrandom()
○ Linux: /dev/urandom
○ Quantum Random Number Generation

Source image: Quantis QRNG PCIe New Generation

https://docs.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://man7.org/linux/man-pages/man2/getrandom.2.html
https://www.idquantique.com/random-number-generation/products/quantis-qrng-pcie/


User’s password
● Not random
● Predictable (most of the time)
● Only a subset of ASCII codes (typically 68 vs 256)
● Never use it as encryption/authentication key!
● Use Key Derivation Function (KDF) to generate a key from a 

user’s password
● Eg. PBKDF2, Argon2i, Lyra2, Catena, yescrypt, Makwa, Balloon 

hashing



How to store user’s password
● Hashing is the best approach to store a user’s password (eg. in a file or a 

database)
● Which hash algorithm to use?
● MD5 and SHA family hash are not good, they are vulnerable to brute 

force attack using GPU (few seconds in some cases)
● Good hash algorithms are the following adaptive functions:

○ bcrypt (CPU intensive)
○ scrypt (CPU and memory intensive)
○ Argon2 (CPU, memory and degree of parallelism intensive)



Bruteforce attack
● A graphics processing unit (GPU) is a 

specialized CPU used in video games to 
execute multiple operation in parallel

● It can be used to run hash algorithms in 
parallel to perform a brute force attack

● A GPU has thousands of core (eg. 
4000), a CPU just multiple (eg. 16)

● Using hashcat software and GPUs you 
can crack a 8 characters password in 
seconds! 

Source image: 25-GPU cluster 

https://hashcat.net/hashcat/
https://arstechnica.com/information-technology/2012/12/25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/


Side-channel attacks



Side-channel attack
● Attack based on information gained from the implementation of a 

computer system, rather than weaknesses in the implemented algorithm 
itself

Image source: STELLAR, a Generic EM Side-Channel Attack Protection through Ground-Up Root-cause Analysis

https://eprint.iacr.org/2018/620.pdf


Decode RSA key using power analysis

Source: Protecting Against Side-Channel Attacks with an Ultra-Low Power Processor

https://www.synopsys.com/designware-ip/technical-bulletin/protecting-against-side-channel.html


Timing attack
● An attacker measures the CPU time to perform some procedures 

involving a secret (e.g. encryption key). If this time depends on the secret, 
the attacker may be able to deduce information about the secret

● In 2006 A. Shamir, E.Tromer and D.A. Osvik used a timing attack to extract 
the full encryption key in 65 ms using a Linux dm-crypt device with 128-bit 
AES in ECB mode (see [18] in references)

https://en.wikipedia.org/wiki/Dm-crypt


Prevent timing attack
● We need to reduce the information that an attacker can retrieve 

measuring the execution time
● For instance:

○ implement algorithm with constant execution time, eg. not related to 
the size of the key

○ avoid the usage of lookup tables in encryption algorithms to prevent 
cache timing effects



Example: compare strings
● What information an attacker can deduce from the following code?

function compare(string $expected, string $actual): bool
{
    $lenExpected = strlen($expected);
    $lenActual   = strlen($actual);
    if ($lenExpected !== $lenActual) {
        return false;
    }
    for($i=0; $i < $lenActual; $i++) {
        if ($expected[$i] !== $actual[$i]) {
            return false;
        }
    }
    return true;
}



Cache-timing attacks
● Cache-timing attacks are software side-channel attacks exploiting the 

timing variability of data loads from memory
● This variability is due to the fact that all modern microprocessors use a 

hierarchy of caches to reduce load latency
● If a load operation can retrieve data from one of the caches (cache hit), 

the load takes less time than if the data has to be retrieved from RAM 
(cache miss)



S-box in AES
● The S-box maps an 8-bit input, c, to an 

8-bit output
● The S-box is used in SubBytes function

● C. Ashokkumar et. al. showed that “S-Box” 
Implementation of AES is NOT side 
channel resistant, using a lookup table
(see [21] in references)



S-box in C
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM

// The numbers below can be computed dynamically trading ROM for RAM -

// This can be useful in (embedded) bootloader applications, where ROM is often limited.

static const uint8_t sbox[256] = {

 //0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F

 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,

 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,

 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,

 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,

 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,

 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,

 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,

 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,

 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,

 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,

 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,

 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,

 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,

 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,

 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,

 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 

};

https://github.com/kokke/tiny-AES-c/blob/master/aes.c#L76-L96

https://github.com/kokke/tiny-AES-c/blob/master/aes.c#L76-L96


Bitslicing
● The bitslicing technique has been introduced by Eli Biham in 1997 (see 

[20] in references)
● Essentially, bitslicing simulates a hardware implementation in software: 

the entire algorithm is represented as a sequence of atomic Boolean 
operations

● This sequence is executed in constant time
● We can use it to implement S-box in AES (see [19] in references)



Bitslicing in AES

static void SubBytes(state_t* state)

{

 uint8_t i, j;

 for (i = 0; i < 4; ++i)

 {

   for (j = 0; j < 4; ++j)

   {

     (*state)[j][i] = 

getSBoxValue ((*state)[j][i]);

   }

 }

}

https://github.com/kokke/tiny-AES-c/blob/master/aes.c#L251-L261

tiny-AES-c, implementation

static void SubBytes(state_t* state)

{

 AES_state s = {{0}};

 LoadBytes(&s, state);

 SBoxBS(&s);

 SaveBytes(state, &s);

}

static void SBoxBS(AES_state *s) {

   uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4];

   uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0];

   uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16;

   uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D;

   uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40;

   uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54;

   uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63;

   T1 = U0 ^ U3;

   T2 = U0 ^ U5;

   T3 = U0 ^ U6;

   ...

}

AES bitslicing

https://github.com/kokke/tiny-AES-c/blob/master/aes.c#L251-L261


Crypto library: NaCl



NaCl
● NaCl: Networking and Cryptography library
● High-speed software library for network communication, 

encryption, decryption, signatures, etc
● Developed by Prof. Daniel J. Bernstein, and others
● Highly-secure primitives and constructions, implemented with 

extreme care to avoid side-channel attacks

https://nacl.cr.yp.to/
http://cr.yp.to/djb.html


Sodium
● Sodium (libsodium) is a fork of NaCl
● A portable, cross-compilable, installable, packageable, 

API-compatible version of NaCl
● Same implementations of crypto primitives as NaCl
● Shared library and a standard set of headers (portable 

implementation)
● Official web site: libsodium.org

https://doc.libsodium.org/


Sodium: features
● Authenticated public-key and authenticated shared-key encryption
● Public-key and shared-key signatures
● Hashing
● Keyed hashes for short messages
● Secure pseudo-random numbers generation
● Zeroing memory



Sodium: algorithms
● Curve25519, Diffie–Hellman key-exchange function
● Salsa20, ChaCha20 stream ciphers
● Poly1305, message-authentication code
● Ed25519, public-key signature system
● Argon2 and Scrypt, password hashing
● AES-GCM, authenticated encryption algorithm



Examples: use libsodium in PHP



Sodium in PHP
● Available (as standard library) from PHP 7.2
● 85 functions with prefix sodium_
● e.g. sodium_crypto_box_keypair()



Symmetric encryption
// code1.php at https://github.com/ezimuel/sodium-php-talk

$msg = 'This is a super secret message!' ;

// Generating an encryption key and a nonce

$key   = random_bytes(SODIUM_CRYPTO_SECRETBOX_KEYBYTES); // 256 bit

$nonce = random_bytes(SODIUM_CRYPTO_SECRETBOX_NONCEBYTES); // 24 bytes

// Encrypt

$ciphertext = sodium_crypto_secretbox ($msg, $nonce, $key);

// Decrypt

$plaintext = sodium_crypto_secretbox_open ($ciphertext, $nonce, $key);

echo $plaintext === $msg ? 'Success' : 'Error';

Algorithms: XSalsa20 for encrypt and Poly1305 for MAC



Symmetric authentication

Algorithm: HMAC-SHA512

// code2.php at https://github.com/ezimuel/sodium-php-talk

$msg = 'This is the message to authenticate!' ;

$key = random_bytes(SODIUM_CRYPTO_SECRETBOX_KEYBYTES); // 256 bit

// Generate the Message Authentication Code

$mac = sodium_crypto_auth ($msg, $key);

// Altering $mac or $msg, verification will fail

echo sodium_crypto_auth_verify ($mac, $msg, $key) ? 'Success' : 'Error';



Public key encryption

Algorithms: 
XSalsa20 for encrypt, 
Poly1305 for MAC, and 
XS25519 for key exchange

// code3.php at https://github.com/ezimuel/sodium-php-talk

$aliceKeypair = sodium_crypto_box_keypair();

$alicePublicKey = sodium_crypto_box_publickey($aliceKeypair);

$aliceSecretKey = sodium_crypto_box_secretkey($aliceKeypair);

$bobKeypair = sodium_crypto_box_keypair();

$bobPublicKey = sodium_crypto_box_publickey($bobKeypair); // 32 bytes

$bobSecretKey = sodium_crypto_box_secretkey($bobKeypair); // 32 bytes

$msg = 'Hi Bob, this is Alice!';

$nonce = random_bytes(SODIUM_CRYPTO_BOX_NONCEBYTES); // 24 bytes

$keyEncrypt = $aliceSecretKey . $bobPublicKey;

$ciphertext = sodium_crypto_box($msg, $nonce, $keyEncrypt);

$keyDecrypt = $bobSecretKey . $alicePublicKey;

$plaintext = sodium_crypto_box_open($ciphertext, $nonce, $keyDecrypt);

echo $plaintext === $msg ? 'Success' : 'Error';



Digital signature

Algorithm: Ed25519

// code4.php at https://github.com/ezimuel/sodium-php-talk

$keypair = sodium_crypto_sign_keypair();

$publicKey = sodium_crypto_sign_publickey($keypair); // 32 bytes

$secretKey = sodium_crypto_sign_secretkey($keypair); // 64 bytes

$msg = 'This message is from Alice';

// Sign a message

$signedMsg = sodium_crypto_sign($msg, $secretKey);

// Or generate only the signature (detached mode)

$signature = sodium_crypto_sign_detached($msg, $secretKey); // 64 bytes

// Verify the signed message

$original = sodium_crypto_sign_open($signedMsg, $publicKey);

echo $original === $msg ? 'Signed msg ok' : 'Error signed msg';

// Verify the signature

echo sodium_crypto_sign_verify_detached($signature, $msg, $publicKey) ?

    'Signature ok' : 'Error signature';



AEAD AES-256-GCM
// code5.php at https://github.com/ezimuel/sodium-php-talk

$msg = 'Super secret message!';

$key = random_bytes(SODIUM_CRYPTO_AEAD_AES256GCM_KEYBYTES);

$nonce = random_bytes(SODIUM_CRYPTO_AEAD_AES256GCM_NPUBBYTES);

// AEAD encryption

$ad = 'Additional public data';

$ciphertext = sodium_crypto_aead_aes256gcm_encrypt($msg, $ad, $nonce, $key);

// AEAD decryption

$decrypted = sodium_crypto_aead_aes256gcm_decrypt($ciphertext, $ad, $nonce, $key);

if ($decrypted === false) {

   throw new \Exception("Decryption failed");

}

echo $decrypted === $msg ? 'OK' : 'Error';



ARGON2i
// code6.php at https://github.com/ezimuel/sodium-php-talk

$password = 'password';

$hash = sodium_crypto_pwhash_str (

   $password,

   SODIUM_CRYPTO_PWHASH_OPSLIMIT_INTERACTIVE,

   SODIUM_CRYPTO_PWHASH_MEMLIMIT_INTERACTIVE

); // 97 bytes

echo sodium_crypto_pwhash_str_verify ($hash, $password) ?

    'OK' : 'Error';

An example of output: $argon2id$v=19$m=65536,t=2,p=1$EF1BpShRmCYHN7ryxlhtBg$zLZO4IWjx3E...



KDF using ARGON2i
// code8.php at https://github.com/ezimuel/sodium-php-talk

$password = 'password';

$salt = random_bytes(SODIUM_CRYPTO_PWHASH_SALTBYTES);

$key = sodium_crypto_pwhash (

   32,

   $password,

   $salt,

   SODIUM_CRYPTO_PWHASH_OPSLIMIT_INTERACTIVE,

   SODIUM_CRYPTO_PWHASH_MEMLIMIT_INTERACTIVE

);
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