
AI Agents in PHP: tool calling and
Model Context Protocol MCP
Enrico Zimuel, Tech Lead & Principal Software Engineer @ Elastic

Programmer User Group Milan - June 16, 2025

Agenda

● Large Language Model: a quick intro
● Tool calling (or Function calling)
● Agentic AI
● Multi-agent systems
● Model Context Protocol
● Examples in PHP

LLM: a quick introduction

● Large Language Model LLM) are probabilistic models that
produce sentence in natural language

● These models work by completing sentences

LLMAI is transforming AI is transforming
the way we work

PROMPT

Transformer architecture

● Introduced in Attention is All You
Need paper in 2017

● Basement of all LLMs

● The sentences are analyzed using a
self-attention mechanism: each
part of a sentence is evaluated in
relation to every other part to
understand contextual relationships
and assign appropriate weights

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Prompt engineering

● You can encounter situations where the model doesn't produce
the outcome that you want on the first try

● You may have to revisit the language several times to get a good
answer

● The development and improvement of the prompt is known as
prompt engineering

● One powerful strategy is to include examples of the task that you
want the model to carry out inside the prompt

● This is called In-Context Learning ICL

ICL - zero shot inference

LLM
Prompt
Classify this review:
I loved this movie!
Sentiment:

Completion
Classify this review:
I loved this movie!
Sentiment:
Positive

ICL - one shot inference

LLM
Prompt
Classify this review:
I loved this movie!
Sentiment:
Positive
Classify this review:
I don’t like this chair.
Sentiment:

Completion
Classify this review:
I loved this movie!
Sentiment:
Positive
Classify this review:
I don’t like this chair.
Sentiment:
Negative

ICL - few shot inference

LLM
Prompt
Classify this review:
I loved this movie!
Sentiment:
Positive
Classify this review:
I don’t like this chair.
Sentiment:
Negative
Classify this review:
This is not great.
Sentiment:

Completion
Classify this review:
I loved this movie!
Sentiment:
Positive
Classify this review:
I don’t like this chair.
Sentiment:
Negative
Classify this review:
This is not great.
Sentiment:
Negative

LLM limitations

● Prone to Hallucinations: Since an LLM is a probabilistic
model, it can generate incorrect or nonsensical information

● No sources: The output of an LLM does not provide sources
for its information (again hallucinations)

● Fixed Knowledge: The model's knowledge is static, meaning
it does not learn or adapt from interactions

● Difficult to Update: Expanding an LLMʼs knowledge requires
retraining or fine-tuning, which is complex,
resource-intensive, and time-consuming

Emerging properties

● ˮEmergence is when quantitative changes in a system result
in qualitative changes in behavior.ˮ P. Anderson, 1972

● LLM models (big) appear to exhibit emergent properties Wei
et al. 2022

● Emerging properties:
○ Question Answering
○ Summarization
○ In-Context Learning
○ Tool Calling and Coding
○ etc

Tool calling Function calling)

History of tool calling
● Tool calling (or function calling) is an emerging property in LLM
● Relevant papers that investigated the topic:

○ Nakano et al., WebGPT Browser-assisted question-answering
with human feedback, OpenAI, 2022

○ Timo Schick et al., Toolformer: Language Models Can Teach
Themselves to Use Tools, Meta AI Research, 2023

○ Function calling and other API updates, OpenAI, June 13, 2023

https://arxiv.org/pdf/2112.09332
https://arxiv.org/pdf/2112.09332
https://arxiv.org/pdf/2302.04761
https://arxiv.org/pdf/2302.04761
https://openai.com/index/function-calling-and-other-api-updates/

Tool calling (or Function calling)
● Tool calling is the ability of LLM to recognize the need to

execute external functions (tools) as part of its reasoning
process

● The LLM recognizes when it needs of additional information or
actions and request the usage of tools (preparing the generation
a function call in JSON function)

● The client is responsible for executing the function call (not the
LLM) and this step is usually monitored by a human

A diagram of Tool calling

Tool calling in OpenAI
POST https://api.openai.com/v1/chat/completions
{
 "model": "gpt-4.1",
 "messages": [
 {
 "role": "user",
 "content": "What is the weather like in Milan today?"
 }
],
 "tools": [
 {
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for a given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Rome, Italy"
 }
 },
 "required": [
 "location"
],
 "additionalProperties": false
 },
 "strict": true
 }
 }
]
}

Response
[{
 "id": "call_12345xyz",
 "type": "function",
 "function": {
 "name": "get_weather",
 "arguments": "{\"location\":\"Milan, Italy\"}"
 }
}]

Tool calling in PHP
● OpenAI PHP client, supercharged community-maintained

PHP API client that allows you to interact with OpenAI API
● LLPhant, A comprehensive PHP Generative AI Framework
● LLM Chain (experimental), library for building LLM-based

and AI-based features and applications

https://github.com/openai-php/client
https://github.com/LLPhant/LLPhant
https://github.com/php-llm/llm-chain

Agentic AI

Agentic AI
● Agentic AI refers to AI systems that can act autonomously to

achieve goals, making decisions and taking actions without direct
human intervention

● An agent is usually a software that makes decisions and takes actions
often by calling tools or APIs in a loop, based on its current
understanding of the world and its objective

● Key features of an agent:
○ Goal-oriented
○ Autonomous
○ Interactive
○ Iterative: reason → act → observe → repeat
○ Memory (optional)

Agent workflow example
● Goal: Book a flight to Paris under $500.

○ Plan (reason): “Check available flights.ˮ
○ Act: Calls search_flights(to="Paris", max_price=500
○ Observe: Gets a list of flights.
○ Reason: “Thereʼs a flight on Tuesday under budget. Book it!ˮ
○ Act: Calls book_flight(flight_id)
○ Finish: Reports the result back to the user.

● The agent monitors its own process, deciding what to do next
based on each result

Multi-agent systems
● Multi-agent systems consist of multiple agents that may be able

to communicate with one another.
● The two most common architectures are:

○ Manager pattern – where agents are treated as tools by a
central agent.

○ Decentralized pattern – where agents pass control to one
another.

● These systems can be represented as graphs, where nodes are
agents. In the manager pattern, edges represent tool calls. In the
decentralized pattern, edges represent handoffs, where one
agent transfers execution to another.

Manager pattern

Source: A practical guide to building agents, OpenAI

https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf

Decentralized pattern

Source: A practical guide to building agents, OpenAI

https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf

Limitations
● Execution time: not really fast since it requires many steps
● Expensive: agents typically use about 4x more tokens than chat

interactions, multi-agent use about 15x more tokens than chat
● Complexity: multi-agent are good with parallel tasks but not so

good to manage many dependencies between agents*
● Unpredictability: agent interactions can lead to unexpected

outcomes. Needs of Guardrail systems.
● Evaluation: it's difficult to measure the collective success or

alignment of multiple agents

* How we built our multi-agent research system, Anthropic

https://www.anthropic.com/engineering/built-multi-agent-research-system

Examples in PHP
● Neuron-AI, PHP Agent Development Kit to build customizable,

production-ready LLM applications

https://www.neuron-ai.dev/

Model Context Protocol

Model Context Protocol
● Model Context Protocol MCP) is an open protocol that

standardizes how applications provide context to LLMs
● MCP provides a standardized way to connect AI models to different

data sources and tools
● Client/server architecture

Core architecture
● MCP follows client-server architecture
● Transport layer: Stdio, Streamable HTTP
● All transport use JSONRPC 2.0 to exchange messages

Example: multiple MCP servers

Core MCP concepts
● MCP servers can provide three main types of capabilities:

○ Resources: file-like data that can be read by clients (like API
responses or file contents). Clients can discover available
resources using the resource/list endpoint

○ Tools: functions that can be called by the LLM (with user
approval). Clients can list available tools through the tools/list
endpoint

○ Prompts: pre-written templates that help users accomplish
specific tasks

○ Sampling: allows servers to request LLM completions through
the client

○ Roots: define the boundaries where servers can operate

Examples in PHP
● php-mcp/server, core PHP implementation for the Model Context

Protocol MCP) server
● php-mcp/client, core PHP implementation for the Model Context

Protocol MCP Client

https://github.com/php-mcp/server
https://github.com/php-mcp/client

References
● Ashish Vaswani et al., Attention Is All You Need, NIPS, 2017
● Jason Wei et al., Emergent Abilities of Large Language Models, Published in

Transactions on Machine Learning Research, 2022
● Ilan Bigio, Function Calling is All You Need, OpenAI
● Reiichiro Nakano et al., WebGPT Browser-assisted question-answering with

human feedback, OpenAI, 2022
● Timo Schick et al., Toolformer: Language Models Can Teach Themselves to

Use Tools, Meta AI Research, 2023
● Function calling and other API updates, OpenAI, June 13, 2023
● A practical guide to building agents, OpenAI
● How we built our multi-agent research system, Anthrophic, 2025

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/2206.07682
https://www.youtube.com/watch?v=KUEmEb71vzQ
https://arxiv.org/pdf/2112.09332
https://arxiv.org/pdf/2112.09332
https://arxiv.org/pdf/2302.04761
https://arxiv.org/pdf/2302.04761
https://openai.com/index/function-calling-and-other-api-updates/
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
https://www.anthropic.com/engineering/built-multi-agent-research-system

Thank you!

