‘ elastic

Programming
Elasticsearch with

PHE AN

| B B |
Enrico Zimuel . e +

Principal Software Engineer
Jun 9, 2021, phpday conference

Summary

e Introduction to Elasticsearch
* Elasticsearch and PHP

« Connect to Elasticsearch
 Index, Bulk, Search

« Fuzzy search, Aggregation

« Schema on read (from 7.12)
« Async communication

« Future work

Elasticsearch

- Elasticsearch

- Elasticsearch is a distributed, free and open search and
analytics engine for all types of data

- Elasticsearch scale by design and manage any size of data

« Very fast: near real-time search

- Wide range of search features: filter, aggregate, analyze,
order any type of information

« Elasticsearch is document oriented (JSON), that means it
stores entire objects or documents

« A collection of documents is called an index, the equivalent
of a table in SQL

3 Elasticsearch

* You can interact with Elasticsearch using REST APIs, there is no

client or shell tool

$ curl -X GET http://localhost:9200

"name" : "12b27ad9%5a8b",
"cluster name" : "docker-cluster",
"cluster uuid" : "yz2VKxzORYCQUjXzOMerxQ",
"version" : {
"number" : "7.12.1",
"build flavor" : "default",
"build type" : "docker",
"build hash" : "3186837...b7",
"build date"
"2021-04-20T20:56:39.0407286592",
"build snapshot™ : false,
"lucene version" : "8.8.0",

"minimum wire compatibility version"
"minimum index compatibility version"
s
"tagline" : "You Know, for Search"

}

"6.8.0",
"6.0.0"

Install and run Elasticsearch

e The easiest way to install Elasticsearch is to use a Docker image.
A list of all published Docker images and tags is available at
www.docker.elastic.co

$ docker pull docker.elastic.co/elasticsearch/elasticsearch:7.13.1

e Start a single-node cluster (localhost:9200):

$ docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node"

docker.elastic.co/elasticsearch/elasticsearch:7.13.1

http://www.docker.elastic.co

Elasticsearch and PHP

Elasticsearch with PHP

- Official PHP client for Elasticsearch: elastic/elasticsearch-php

e Updated and released with the Elastic stack version
e Use connection pool for cluster configuration
e Exposes the Elasticsearch APIs using functions of a Client class

e Each function returns the body of HTTP response from
Elasticsearch or a boolean value for HEAD API (eg. Index exists

API)

https://github.com/elastic/elasticsearch-php
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-exists.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-exists.html

elastic/elasticsearch-php

« The body is deserialized from JSON using a Serializer interface
(using associative array as default)

e In case of HTTP errors (4xx, 5xx) the PHP client throws an
ElasticsearchException (eg. Missing404Exception)

« All the endpoint for Elasticsearch are generated using the REST
API specification of Elasticsearch (Oss - Xpack)

« The PHP client for elasticsearch is tested using:
— Unit tests

— Integration tests
— Elasticsearch YAML tests (2,369 tests)

https://github.com/elastic/elasticsearch-php/blob/7.x/src/Elasticsearch/Common/Exceptions/Missing404Exception.php
https://github.com/elastic/elasticsearch/tree/master/rest-api-spec/src/main/resources/rest-api-spec/api
https://github.com/elastic/elasticsearch/tree/master/x-pack/plugin/src/test/resources/rest-api-spec/api
https://github.com/elastic/elasticsearch/tree/master/rest-api-spec/src/main/resources/rest-api-spec/test

Install statistics

 Total install using composer (packagist.org). 50M+

Daily installs, averaged monthly

50.0K

40.0K

30.0K

20.0K

10.0K

e s

2013-09

2014-05

2014-12

2015-08

2016-04

2016-11 2017-07 2018-03

Source; packagist.org

2018-10

2019-06

@ elasticsearch/elasti...

2020-01 2020-09 2021-06

https://packagist.org/packages/elasticsearch/elasticsearch/stats

Elasticsearch APl and PHP

« All the Elasticsearch API are exposed via functions:

Elasticsearch API

Index: PUT /<target>/ doc/<_id>

Bulk: POST /_bulk

Update: POST /<index>/ update/<_id>
Delete: DELETE /<index>/_doc/<_id>
Search: POST /<target>/ search

Cluster Stats: GET /_cluster/stats

PHP function
$client->index($params)
$client->bulk($params)
$client->update($params)
$client->delete($params)
$client->search($params)

$client->cluster()->stats()

11

APl parameters

« The APl parameters are specified using an associative array
$params

Sparams =

12

Installing Elasticsearch for PHP

 Install using composer (latest stable version):

composer require elasticsearch/elasticsearch

- Or add the following require in composer.json:

"require" : {

"elasticsearch/elasticsearch" :

13

Connect to Elasticsearch

e Connect to localhost:9200 and call the Info API

Elasticsearch\

Sclient =
->setHosts ([

->build() ;

Sresult = S$client->info () ;

var dump (Sresult);

array(5) {

'name' => string(12) "cea89f5abf6e"

'cluster_name' => string(14) "docker-cluster"

'cluster_uuid' => string(22) "Np1b...qbVi5kQ"

'version' =>

array(9) {
'number' => string(6) "7.10.0"
'build_flavor' => string(3) "oss"
'build_type' => string(6) "docker"
'build_hash' => string(40) "51e€9d..96"
'build_date' => string(27) “2020-11-09T21:30:33.9649492"
'build_snapshot' => bool(false)
'lucene_version' => string(5) "8.7.0"
'minimum_wire_compatibility_version' => string(5) "6.8.0"
'minimum_index_compatibility version' => string(11) "6.0.0"

}

'tagline' => string(20) "You Know, for Search"

}

https://www.elastic.co/guide/en/elasticsearch/reference/current/info-api.html

14

Connect to a cluster of nodes

e Connectto a cluster and call the Cluster health API:

Elasticsearch\

Sclient = ::create ()

->setHosts ([

Sresult = Sclient->cluster ()->health () ;

var dump (Sresult);

array(15) {
'cluster_name' => string(34) "elasticsearch-oss-7-10"
'status' => string(5) "green"
'timed_out' => bool(false)
'number_of nodes' => int(3)
'number_of_data_nodes' => int(3)
‘active_primary_shards' => int(0)
‘active_shards' => int(0)
'relocating_shards' => int(0)
'initializing_shards' => int(0)
‘'unassigned_shards' => int(0)
'delayed_unassigned_shards' => int(0)
'number_of pending_tasks' => int(0)
'number_of_in_flight_fetch' => int(0)
'task_max_waiting_in_queue_millis' => int(0)
‘active_shards_percent_as_number' => double(100)

https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html

Connection Pool

* You can manage a connection pool using the PHP client

— - Elasticsearch: 3 nodes

dead node
192.168.0.1
<
: ~ @
PHP client AT ES 2 - 192.168.0.2
Y i ;
S N N
B % e A
Round-robin 192.168.0.3
(default) B :
w

16

Selector

- We provided a SelectorInterface to implement a specific
algorithm for selecting the next node

- We offer the following Selector implementations:

— Round-robin (default): iterate over a set of nodes in circular
order;

— Sticky Round-robin: use current connection unless it is
dead, otherwise round-robin

— Random: select a random node from the set

 You can provide a custom selector implementation using the
ClientBuilder::setSelector() function

https://github.com/elastic/elasticsearch-php/blob/7.x/src/Elasticsearch/ConnectionPool/Selectors/SelectorInterface.php

17

Q Elastic Cloud

 You can connect to Elastic Cloud using Basic Authentication:

Sclient = ::create ()
->setElasticCloudId (
->setBasicAuthentication (

->build() ;

Sclient =

->setElasticCloudId (

->setApiKey (
->build() ;

https://www.elastic.co/cloud/

18

JSON vs PHP

* JSON is supported in PHP using the following functions:

— json_encode ($value [, int $flags =0 [, int $depth =5121]) :

string | false

— json_decode (string $json [, bool | null $associative = NULL [, int
$depth =512 [, int $flags = 0 111) : mixed
 From PHP 7.3 we can use JSON_THROW_ON_ERROR as $flags

to throw a JsonException in case of errors

19

Empty object

 Elasticsearch APl uses empty JSON objects in several locations

which can cause problems for PHP
* An empty JSON object {} can be expressed in PHP using an empty

object new stdClass()

b
"highlight" : ({

"fields" : {
"content" : {}

Data management API

21

Single document indexing

* When you add documents to Elasticsearch, you index JSON

documents

Elasticsearch\
Sclient = ::create ()
->setHosts ([1)

->build() ;

Sparams

Sresult Sclient->index (Sparams) ;

var dump ($Sresult);

array(8) {
'"_index' => string(8) "my_index"
' type' => string(4) " _doc"
'_id" => string(5) "my_id"
' version' =>int(1)

'result' => string(7) "created"

_shards' => array(3) {
'total' => int(2)
'successful' => int(1)
'failed' => int(0)

}

' seq_no' =>int(0)

' primary_term' => int(1)

}

22

Bulk indexing

* You can manage multiple documents using the Bulk API

« Perform multiple index, create, delete, and update actions in
a single request

« The actions are specified in the request body using NDJSON

($1=0; S$1i < 100; Si++) {
Sparams [111 =1

Sresult = Sclient->bulk (Sparams);

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html
http://ndjson.org/

Missing document

 If the document does not exist returns a Missing404Exception

Elasticsearch\

Elasticsearch\Common\Exceptions\

Sclient = ::create ()
->setHosts ([1)
->build () ;

Sparams =

Sresult Sclient->get ($Sparams) ;
(se) |

printf (\n",

23

Se->getMessage ()) ;

You Know, for Search!

25

Searching a document

« The client gives full access to every query and parameter

exposed by the REST API, following the naming scheme as
much as possible

array(4) {
params 'took! => int(1)
'timed_out' => bool(false)
' shards' => array(4) {
'total' => int(1)
'successful' => int(1)
'skipped' => int(0)
'failed' => int(0)
} RESULTS
'hits' => array(3) {
'total' => array(2) {
'value' => int(1)
'relation’ => stri

'max_score#<> double(0.2876821)
'hits' => array(1)f

[0] =>
var dump ($result); array(5) {

Sresult = Sclient->search ($params) ;

=

26

Using raw JSON

- Sometimes it is convenient to use raw JSON for testing
purposes, or when migrating from a different system

* You can use raw JSON as a string in the body, and the client
detects this automatically:

Sparams = |

=>

=> Sjson
17

Sresult = Sclient->search (Sparams) ;

var dump ($result);

Scrolling

« The scrolling functionality of Elasticsearch is used to paginate
over many documents (max. 10,000 hits)*

 Itis more efficient than regular search because it doesn’t need
to maintain an expensive priority queue ordering the
documents

« Scrolling works by maintaining a "point in time" snapshot of
the index which is then used to page over

* You execute a search request with scroll enabled. This returns
a "page" of documents, and a scroll_id which is used to
continue paginating through the hits

* = for more than 10’000 we recommend the usage of scroll search result API

27

https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html#scroll-search-results

Scrolling example

I -
Sresult = Sclient->search (Sparams) ;

(isset (Sresult]| 11 1) && count (Sresult]|

Sresult = Sclient->scroll ([
=
=> Sresult]

=>

Fuzzy search

Fuzzy search

 Returns documents that contain terms similar to the search

term, as measured by a Levenshtein edit distance.

« An edit distance is the number of one-character changes

needed to turn one term into another.

« These changes can include;

30

Changing a character (box — fox)
Removing a character (black — lack)
Inserting a character (sic — sick)

Transposing two adjacent characters (act — cat)

https://en.wikipedia.org/wiki/Levenshtein_distance

Fuzzy search: example

doc1: "i will marry you because | love
you"

doc2: "i will live with harry"

doc3: "i'm sorry for your loss"

Lev(harry', 'marry’) = 1 in doc1
Lev(harry', 'harry’) = 0 in doc2
Lev(‘harry', 'sorry’) = 2 in doc3

Where Lev is Levenshtein distance.

Sresult = S$client->search ($Sparams) ;

Aggregation

33

Aggregation

« An aggregation summarizes your data as metrics, statistics, or
other analytics
« Aggregations help you answer questions like:
— What's the average load time for my website?
— Who are my most valuable customers based on
transaction volume?
— What would be considered a large file on my network?

— How many products are in each product category?

34

Example

Sresult = S$Sclient->search (Sparams) ;

var dump (Sresult) ;

array(5) {

'took' =>

int(40)

'timed_out' =>

bool(false)

' shards' =>

array(4) {
'total' =>
int(1)

'successful' =>

int(1)
'skipped' =>
int(0)
'failed' =>
int(0)
}
‘hits' =>
array(3){ ... }

‘aggregations’ =>

array(1) {

'my-agg-name’ =>

array(3) {

'‘doc_count_error_upper_bound' =>

int(0)

'sum_other_doc_count' =>

int(606450)

'buckets' =>
array(10) {

}

Results

Highlighting

36

Highlighting

- Highlighters enable you to get highlighted snippets from one
or more fields in your search results so you can show users

where the query matches are

The comfortable hopping speed for a kangaroo is about 21-26 km/h (13—16 mph), but speeds of up to
When hunting, African wild dogs can sprint at 66 km/h (41 mph) in bursts, and they can maintain
The fastest horse speed was achieved by a Quarter horse. It reached 70.76 km/h (43.97 mph).

Lionesses are faster than males and can reach maximum speeds of 35 mph (57 km/h) in short distances

37

Example

Sresult = S$client->search (Sparams) ;

]

(Sresult [

print r (Sres|

as Sres)

{

Array
(

[0] => The comfortable hooping ...
mph) but ...

)
Array

(
[0] => When hunting ...

mph) in burst ...

)

Schema on read

39

Schema on read

- Elasticsearch 7.12 introduced the ability to change schema on
read using runtime fields
« Runtime fields let you define and evaluate fields at query time,
which opens a wide range of new use cases
« Forinstance:
— adapt to a changing log format or fix an index mapping;
— don't have intimate knowledge of data, you can use
runtime fields and define your schema without

impacting others

Example

« Create a field with the average of high and low stock price

Sresult = Sclient->search(]

Asynchronous calls

Future mode (async)

« The client offers a mode called future or async mode. This allows
batch processing of requests (sent in parallel to the cluster), which
can have a dramatic impact on performance and throughput

« PHP is fundamentally single-threaded, however, libcurl provides a

functionality called the "multi interface"

@ elastic
42

43

Future mode example

Sparams = [
'index' => 'test',
'id!' => 1,
'client' => |
'future' => 'lazy'
]
1;

Sfuture = Sclient-> (Sparams) ;

$doc = Sfuture[' source'l];

Future resolution with wait()

Sclient ClientBuilder: :create()-—>build() ;
Sfutures (1,

($1 = 0; Si < 1000; Si++) {
Sparams = [
'index' => 'test',
'id' => Si,
'client' => |
'future' => 'lazy'
]
17

Sfutures[] = $client-> ($Sparams) ;

Sfutures[999] ->wait () ;

More information about Future mode

https://www.elastic.co/guide/en/elasticsearch/client/php-api/current/future_mode.html

Future work

46

Future work

- We are working on a new PHP client that will use PSR standards
* In particular:
— PSR-3 for logging
— PSR-7 for HTTP messages
— PSR-17 for HTTP factories
— PSR-18 for HTTP Client
« We will use Guzzle as default HTTP client library
« We will continue to offer async HTTP call

« For more information: elastic/elastic-transport-php

https://www.php-fig.org/psr/
https://www.php-fig.org/psr/psr-3/
https://www.php-fig.org/psr/psr-7/
https://www.php-fig.org/psr/psr-17/
https://www.php-fig.org/psr/psr-18/
https://docs.guzzlephp.org/en/stable/
https://github.com/elastic/elastic-transport-php

Thanks!

For more information:

Flasticsearch PHP documentation

Elasticsearch-php github repository

https://www.elastic.co/guide/en/elasticsearch/client/php-api/current/index.html
https://github.com/elastic/elasticsearch-php

